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ABSTRACT 

Instability limits the usefulness of indirect sounding, i.e. the deduction of a physical distribution from a set of 
observations which rcprcsent an integral transform of the former. A method is presented which allows 5t stable, 
but  smoothed, solution to be obtained in certain cases. As an illustrztion c f  the application c f  the method, the 
deduction of vertical ozone distribution from rneasuremcnts of the spectral distribution of scattered ultraviolet 
radiation is discussed. Graphs showing results from several pcssible methods of inversion are included to show the 
difficulties essociatcd with such indirect measurements. 

1. INTRODUCTION 
Primarily at the behest of Dr. Harry Wesler, one of the 

writers embarked a couple of years ago on an investigation 
which, i t  was hoped, would produce a new and superior 
method for deducing the vertical distribution of ozone 
from purely ground-b ased passive measurements. 

The results up to now have shown that the projected 
methods, while comparable and potentially superior to 
existing ground-based passive methods, can never produce 
detailed distributions with the resolution of fine scale 
structure of which direct (balloon-borne, for example) 
sounding is capable. However the investigation has 
helped to give some insight into potentialities and limi- 
tations of indirect sounding methods, and has shown that 
there can be in the inversion process a fundamental 
instability which limits the resolving power of indirect 
soundings generally. 

The phrase “indirect sounding” is used here to denote 
the use of measurements at a single place of a function 
y(y) of a variable parameter y to infer the spatial distribu- 
tionf(r) of the desired quantity, there being no one-to-one 
correspondence between y and x. It may be mentioned 
that many methods which may be direct when considered 
in an idealized formulatidn can degenerate into the 
category of indirect sounding as a result of instrumental 
fallibility. The distinction between “direct” and “indi- 
rect” is, therefore, not always rigid. 

2. THE GENERAL PROBLEM 
In  Inany instances a physical distribution f(z) (for 

example, pressure versus ozone) can be shown to be 
related to another phj-sical distribution y(y) (for esaniple, 

spectral energy ’iersus absorption coefficient) bj. an 
integral equation such its 

From a mathematical point of view, an equation of this 
kind allowsf(z) to be described uniquely b>- g(y) , provided 
only that no two distinct functions of z lead to the same 
g(y). I n  niany instances-the Fourier transform being 
the most outstanding-either g(yj or j ( x )  niay be most 
suited to the problem at hand, and one may shuttle back 
and forth between the function and its transform, for 
either f(z) or y(y) describe the function equally well. 

Formally, therefore, one need only find a relationship 
of this kind to deduce spatial distributions from a set of 
observations at  one place and one time. Practically, 
however, uniqueness of the transform is not sufficient, 
if one hopes to inferf(zj from measurements of g(y). The 
reasons for this are: 

(i) Measurements can, a t  best, give the value of g(y) 
a t  a finite number of values of the argument; these values 
are usually real, and often positive, values only. Thus 
g(y) cannot be said to be defined in an analytical sense, 
and analytical inversions cannot be utilized directly. 

(ii) Since there are always some uncertainties associated 
with measurements (however precise) , g(y) will not be 
known exactly at  any point. In a graphical sense, one 
should draw a small circle about the measured point in 
the gy plane and assert only that the true q(y) of equation 
(1) passes through each such small circle. 

It thus becomes apparent that the c>rucial question is: 
Gix-en a strip of finite extent ( c l y y l d )  and finite width 
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in the plane of g and y, is the transform expressed by (1) 
such that all functions of x possessing transforms which 
lie within this strip in the interval e 5  y I d  themselves 
lie within a strip of finite width in the fx plane? 

If the answer is in the negative the inversion of the 
transform is unstable, and a unique solution, or a solution 
with a predictable uncertainty, cannot be inferred from 
measurements of g(y) alone. 

Unfortunately most of the transforms encountered in 
practice are of this uncooperative character. This is 
usually associated with fixed, finite limits of integration 
and a kernel K(z,y) which is smooth (often monotonic) 
with respect to x. 

The case of the integral equation relating the spectral 
distribution of scattered light to the vertical distribution 
of atmospheric ozone furnishes a good example of the in- 
stability under discussion. I t  is not difficult to show that 
measurements of the scattered energy upward to a satellite 
instrument or downward to the ground are sufficient to 
derive values of the function B(k) ,  where 

If the solar zenith distance is 2 and the instrument line of 
sight is inclined a t  an angle U to the vertical, then k is, 
for the satellite instrument K (sec Z+sec U )  and, for the 
ground-based instrument K (sec 2-sec U ) ,  K being in both 
cases the absorption coefficient; X is the total ozone in a 
column extending through the entire atmosphere. p ( z )  
describes the ozone distribution by giving the pressure 
level above which lie x units of ozone. k can be varied 
either by allowing the solar altitude to vary (Gotz’ 
Umkehr method), or by making observations at  various 
wavelengths and thereby altering K, which is a function 
of wavelength (fig. I ) ,  or by varying the angle of ob- 
servation, U. Thus in the case of ‘(indirect sounding” of 
ozone from scattered light measurements, the kernel takes 
the form e-’”= and the limits of integration become 0 and 
X, respectively; the function sought is the integrand 
€unction p ( x )  or dp(x)/dx. 

The stability criterion under these conditions is most 
readily examined if the variables ore changed to <=rx/X 
and v=kX/s;  considering dpldx as an unknown function 
f ( l )  of E ,  one may write 

9 (7) =so” e - 7E.f (W4 

and examine the stability of this transform. The func- 

tion j(~)-,[f(s)-f(O)]-f(O) vanishes a t  E=O and s 

and can therefore be written as a Fourier sine series (with 
coefficients b,, say). By applying the integral transform 
to each term, there results: 

E 

rl mbm S m  1 262 g(v)=(l---e-”’l) -+-+. . . +7*+ . . . [ v L  v + 4  
+(a term independent of the b’s) 
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FIGURE l.--4bsorption coefficient K as a function of wavelength A. 

Thus the transform is less and less sensi tive the higher the 
frequency of the Fourier component. Hence two func- 
tions may differ greatly from one another and still possess 
transforms which differ very litttle. More specifically, the 
transforms of two functionsf’ andf”  differ absolutely by 
less than 6 provided only that 

c I (G- GI l/m<6 
m 

This inequality places no bounds on the norm (b6- b:)2. 
Thus the transform is unstable ; since it greatly diminishes 
the contribution of the higher order Fourier components, 
one might expect that the instability of the inversion 
might be manifested by the appearance of high frequency 
oscillations in the (‘solution” when g(y) is to  any extent 
imprecise. 

I n  practice one cannot “solve” equation (I) in an ana- 
lytic sense when g(y) is measured at  N points. The 
solution a t  best is a finite array of numbers (which may 
be values of f(z) a t  selected points zl, xr, . . ., s,, or 
coefficients in the expansion of f ( s )  in terms of selected 
approximating functions). However, the instability just 
discussed still is present--and it is likely to be most 

m 
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FIGURE 2.-(a) Comparison of exact solution (curve I) and least squares solution (curve 11) with original hypothetical distribution of 
(b) Comparison of solution by select,ion (curve 111) with original hypothe- pressure versus total ozone above specified pressure level. 

sized ozone distribution. 

troublesome the greater the number of tabular points in was computed to obtain the curve shown in figure 3. A 
x, since higher frequencies are thereby admitted. It is quadrature Eormula of high accuracy was then constructed 
important to note that the instability of the inversion and a matrix A thereby obtained such that 
is a property of the kernel, not a result of the method 
of inversion. reAf (r,=R(kJ;f ,=p(x,))  

In figure 2a a hypothetical ozone distribution is shown 
in terms of pressure versus total ozone above the speci- 
fied pressure level. Obviously negative values of dp(x)/dx 
are physically meaningless. For 28 values of k up to 
30 (em. STP)-’, the quantity 

This (22-point) quadrature was accurate to better than 
)d percent for smooth, monotonic integrands. 

When, however, the “solution” A-’r was computed, 
the result was ludicrous (curve I, figure 2a); when a least 
squares solution (curve 11) was obtained, the result was 
no better. Yet when these distributions were inserted 
back into the integral equation they yielded €or R(k)  
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FIGURE 3.-The function R ( k )  from which the solutions in figure 2 
were obtained by inversion. 

values almost identical with thosc which served as a 
starting point. Table 1 shows the original values R(k) ,  
the values obtained by substituting the “exact” solution 
( I )  into the integral, R,(k),  and thc corresponding quan- 
tities from the lcast squares solution, RII(k) .  

These results are a very vivid example of the instabil- 
ity of many integral equations. It is noteworthy that 
the degree of agreement found when a solution is inserted 
into the integral and the resulting transform compared 
with the given values of the transform cannot be used 
to assess the closeness of the approximation to that func- 
tion which transforms exactly to those values. This 
merely restates what has been already demonstrated, 
but perhaps cannot bc repeated too often, since many 
methods of inversion assume that nearness of the trans- 
forms in the gy plane implies nearness of the corresponding 
€unctions in the jx plane. 

It may be remarked that in the matrix formulation 
AF=g corresponding to the integral equation, instability 
manifests itself in the guise of extreme skewness (non- 
orthogonality) of the quadrature matrix A. A (and, 
incidentally, the least-squares matrix A* A where A* 
is the transpose of A) possesses several very small eigen- 
values and less); thus A-‘ and (A*A)-‘ possess 
very large eigenvalues. Hence thc “exact” solution be- 
comes, when an error e exists in g, f+A-le; the least 
squares solution becomes f+  (A*A)-‘A*e. But the large 

eigenvalues of A-’ and (A*A)-’ can magnify E to the 
extent that the error term dominates the inversion. 

3. SOLUTION-BY SELECTION 
The instability which has been demonstrated to exist 

in the case of the kernel ecZu is so severe that it aniounts 
to non-uniqueness for all practical purposes. Similar in- 
stability can be shown to exist in the case ol other Berncls 
which arise in similar indirect sounding problems. 

The only practical, useful method ol solution is to 
recognize that the equation 

&=JK(x, YlS(x)clx+4Y) 

has an infinity of possible solutions when le(y)/ is every- 
where SG, unless E is exactly zero. It is possible uniquely 
to select from this infinite manifold of functions that func- 
tion for which a specified measurc of smoothness attains 
a miixiniurn. This Iunction ctm be regarded as the most 
probable solution, if the measure of smoothness has some 
a priori physical basis, for esamplc. 

In thc case of the finite-difference cquation analogous 
to the above intcgrul equation, i.e. 

Af=g+e 

it can be shown (Twomey [3]) that such constrtbints may 
be applied and a practically unique vector f 1  computed 
by the equation: 

f 1 = (A* A + rH )-’ (Kg + yh ) 

where H is a symmetric matrix, the form of which depends 
on the exact criterion or constraint applied; h is a vector, 
which also depends on the constraint ; and y a Lagrangian 
multiplier, is determined by 141. If, for exaiiiple, the con- 
straint requires that the selected “solution” be that which 
departs least from a specified curve, then H bccoines the 
unit matrix I and h is the specsed cwvc in vector form. 

In the case of atmospheric ozone distribution the gen- 
eral shape of the curve is predictable-particularly whcn 
the total ozone has been measured, for then the end point 
(P, X )  of the p ( z )  curve is also known. In  figure 4 are 
plotted distributions from Dutsch [2]. It is obvious that 
once the cnd point is known, a curve can be drawn which 
will not lie too far from the true curve. For this reason 
the constraint just described WAS used to obtain inver- 
sions from the R(k)  data of figure 3. The inversion for 
€=9.1 percent is shown in figure 2b (curve 111); the 
result of inserting this solution brtck into the integral 
equation is shown in table 1. 

The reference curve which was used to get a constraint 
vector h is shown in the figure. A curve closer to a typical 
ozone distribution could have been chosen, but this curve 
was used to  show that the choice of the reference curve 
is not critical. It can also be shown, by using different 
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TABLE 1.-Comparison of original values R(k)  with values R I ( ~ ) ,  
R ~ l ( k ) ,  and R l ~ , ( k ) ,  obtained bu using the three solutions shown 

4. DISCUSSION 
The preceding analysis and numerical results exemplify 

the difficulties which are encountered in indirect soundings. 
That these difficulties are fundamental and not procedural 
is apparent ; that similar difficulties will be encountered 
whenever the kernel is smooth can be demonstrated, for 
example by elaborating the Fourier method of section 2. 

Since optical transmission functions tend to  be siiiooth, 
it would seem that all methods of indirect sounding by 
optical means will be similarly troubled and will be 
specifically incapable of resolving fine structure in the 
sounding. That little significance can be attached to fine 
structure in ozone distributions computed froni Umkehr 
data-in particular narrow sharp peaks in ozone concen- 
tration, which affect very slightly the integrated ozone in 
a column-goes without saying. 

I t  is worth noticing that the “resolving power”, in the 
sense of the number of independent points or parameters 
which can be deduced, is determined by the number of 
eigenvalues of the matrix A*A exceeding a definable 
lower limit, which depends on the accuracy of nieasure- 
ment, of the quadrature, and of any other approsimations 
made. But the eigenvalues of A*A are iiierely the es- 
tremal values of the absolute magnitude of a normalized 
arbitrary linear combination of the row vectors of A;  i.e. 
they are measures of independence (Courant-Hilbert [l]) 
of the kernel functions. Increasing the number of values 
of the parameter y within a$xed interval does not, beyond 
a certain point, add to the effective number of independent 
observations; on the other hand, if points can be added 
outside the previous interval, the degree of independence 
increases and the “resolving power” benefits. I n  the case 
of the ozone distribution problem, for example, this would 
involve measuring an increasingly smaller amount of 
energy. Thus the effective “resolving power” is dictated 
by a combination of factors, some purely instrumental. 
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values for y that the exact choice of‘ y or E is not a t  all 
critical, provided the value chosen for E i.s not less than the 
true (and unknown) value of the norm of the error vector E .  

Not alone does this method of solution eliminate the 
spurious high-frequency oscillations, but it greatly sim- 
plifies the problem of correcting for attenuation by scatter- 
ing, for example, since approximations can be introduced 
which allow for this effect a t  the expense of some increase 
in the inaccuracy oE the quadrature formula. This in- 
crease can be “absorbed” by increasing 7, i.e. by allowing 
[el to take on larger values. 

Interestingly enough the application of this kind of 
constraint in the solution process introduces a consider- 
able numerical filtering, which discriminates against 
random errors to a marked degree. This ajises from the 
fact that the manifold of functions of y which are trans- 
forms of smooth functions (or indeed, any continuous 
functions) of x in the interval 0 5 x 5  Xis a very restrictive 
manifold and a random error functioc 6(y) will be a sum 
of functions of which only a part will be within this 
manifold. There is the associated disadvantage that 
short-range fluctuations, even i f  present in the true p(x), 
will be smoothed out in the solution. However, since the 
measured quantity R(k) is so insensitive to  such fluctua- 
tions, their retention in a solution is meaningless; but i t  
must be emphasized that the solution obtained by this 
process is a smoothed p(x) and cannot be used as evidence 
for or against any fine structure in the distribution. 


